19. Fixed costs and variable bounds

- Fixed cost example
- Logic and the Big M Method
- Example: facility location
- Variable lower bounds

Example: ClothCo

ClothCo is capable of manufacturing three types of clothing: shirts, shorts, and pants. Each type of clothing requires that ClothCo have the appropriate type of machine available. The machines can be rented at a fixed weekly cost. The manufacture of each type of clothing also requires some amount of cloth and labor, and returns some profit, indicated below. Each week, 150 hours of labor and 160 sq yd of cloth are available. How should ClothCo tune its production to maximize profits? Note: If we don't produce a particular item, we don't pay the rental cost!

Clothing item	Labor per item	Cloth per item	Profit per item	Machine rental
Shirt	3 hours	4	$\$ 6$	$\$ 200 / \mathrm{wk}$.
Shorts	2 hours	3	$\$ 4$	$\$ 150 / \mathrm{wk}$.
Pants	6 hours	4	$\$ 7$	$\$ 100 / \mathrm{wk}$.

Example: ClothCo

Obvious decision variables:

- $x_{1} \geq 0$: number of shirts produced each week
- $x_{2} \geq 0$: number of shorts produced each week
- $x_{3} \geq 0$: number of pants produced each week
- Constraints:

$$
\begin{array}{ll}
3 x_{1}+2 x_{2}+6 x_{3} \leq 150 & \text { (labor budget) } \\
4 x_{1}+3 x_{2}+4 x_{3} \leq 160 & \text { (cloth budget) }
\end{array}
$$

- Maximize weekly profit:

$$
6 x_{1}+4 x_{2}+7 x_{3}
$$

- Still need to account for machine rental costs...

Example: ClothCo

Binary variables:

- $z_{1}= \begin{cases}1 & \text { if any shirts are manufactured } \\ 0 & \text { otherwise }\end{cases}$
- $z_{2}= \begin{cases}1 & \text { if any shorts are manufactured } \\ 0 & \text { otherwise }\end{cases}$
- $z_{3}= \begin{cases}1 & \text { if any pants are manufactured } \\ 0 & \text { otherwise }\end{cases}$
- Maximize net weekly profit:

$$
6 x_{1}+4 x_{2}+7 x_{3}-200 z_{1}-150 z_{2}-100 z_{3}
$$

Example: ClothCo

Optimization model:

$$
\begin{array}{rll}
\underset{x, z}{\operatorname{maximize}} & 6 x_{1}+4 x_{2}+7 x_{3}-200 z_{1}-150 z_{2}-100 z_{3} \\
\text { subject to: } & 3 x_{1}+2 x_{2}+6 x_{3} \leq 150 \quad \text { (labor budget) } \\
& 4 x_{1}+3 x_{2}+4 x_{3} \leq 160 \quad \text { (cloth budget) } \\
& x_{i} \geq 0, \quad z_{i} \in\{0,1\} & \\
& \text { if } x_{i}>0 \text { then } z_{i}=1 &
\end{array}
$$

- We need to find an algebraic representation for the relationship between x_{i} and z_{i}.

Detour: logic!

How do we represent: "if $x>0$ then $z=1$ "?

- Statements of the form "if P then Q " are written as:

$$
P \Longrightarrow Q
$$

- This is equivalent to the contrapositive:

$$
\neg Q \Longrightarrow \neg P
$$

- But this is not equivalent to the converse:

$$
Q \Longrightarrow P
$$

Detour: logic!

$P:$ I am on the swim team.
Q : I know how to swim.

- Basic statement $(P \Longrightarrow Q)$ true "if I'm on the swim team, then I know how to swim"
- Contrapositive $(\neg Q \Longrightarrow \neg P)$ also true "if I don't know how to swim, then I'm not on the swim team"
- Converse $(Q \Longrightarrow P)$ not true "if I know how to swim, then I'm on the swim team"

Detour: logic!

How do we represent: "if $x>0$ then $z=1$ "?

- Contrapositive: "if $z=0$ then $x \leq 0$ "
- Since $x \geq 0$, this is the same as: "if $z=0$ then $x=0$ "
- Model this as:

$$
x \leq M z
$$

where M is any upper bound on the optimal $x_{\text {opt }} \leq M$. This is called the "Big M method".

Example: ClothCo

Optimization model:

$$
\begin{array}{rll}
\underset{x, z}{\operatorname{maximize}} & 6 x_{1}+4 x_{2}+7 x_{3}-200 z_{1}-150 z_{2}-100 z_{3} \\
\text { subject to: } & 3 x_{1}+2 x_{2}+6 x_{3} \leq 150 \quad \text { (labor budget) } \\
& 4 x_{1}+3 x_{2}+4 x_{3} \leq 160 \quad \text { (cloth budget) } \\
& x_{i} \geq 0, \quad z_{i} \in\{0,1\} & \\
& x_{i} \leq M_{i} z_{i}
\end{array}
$$

- Where M_{i} is an upper bound on x_{i}.
- IJulia notebook: ClothCo.ipynb

Example: ClothCo

We can choose very large bounds, e.g. $M_{i}=10^{5} \ldots$
...or we can choose M_{i} using constraints!

- $3 x_{1}+2 x_{2}+6 x_{3} \leq 150$ (labor budget)

Since we have $x_{i} \geq 0$, we have the obvious bounds:
$x_{1} \leq 50, x_{2} \leq 75, x_{3} \leq 25$

- $4 x_{1}+3 x_{2}+4 x_{3} \leq 160$ (cloth budget) Using a similar argument, we conclude that:
$x_{1} \leq 40, x_{2} \leq 54, x_{3} \leq 40$
- Combining these bounds, we obtain:
$x_{1} \leq 40, x_{2} \leq 54, x_{3} \leq 25$

Choosing an upper bound

It's generally desirable to pick the smallest possible M

Simple example:

$$
P=\{0 \leq x \leq 5, z \in\{0,1\} \mid \text { if } x>0 \text { then } z=1\}
$$

Choosing an upper bound

upper bounding: $P_{1}=\{0 \leq x \leq 5, z \in\{0,1\} \mid x \leq 10 z\}$

LP relaxation: $P_{2}=\{0 \leq x \leq 5,0 \leq z \leq 1 \mid x \leq 10 z\}$

Choosing an upper bound

tightest bound: $P_{3}=\{0 \leq x \leq 5,0 \leq z \leq 1 \mid x \leq 5 z\}$

Same as the convex hull of the original set!

Simple facility location problem

- Facilities $\square: \mathcal{I}=\{1,2, \ldots, /\}$
- Customers $\diamond: \mathcal{J}=\{1,2, \ldots, J\}$
- $c_{i j}$ is the cost for facility i to serve customer j. (e.g. transit cost)
- Each customer must be served and there is no limit on how many
 customers each facility can serve.

Even easier than an assignment problem! Simply assign each customer to the cheapest facility for them:

$$
\text { minimum cost }=\sum_{j \in \mathcal{J}}\left(\min _{i \in \mathcal{I}} c_{i j}\right)
$$

Simple facility location problem

LP formulation

$$
\begin{aligned}
\underset{y}{\operatorname{minimize}} & \sum_{j \in \mathcal{J}} \sum_{i \in \mathcal{I}} c_{i j} y_{i j} \\
\text { subject to: } & \sum_{i \in \mathcal{I}} y_{i j}=1 \quad \text { for all } j \in \mathcal{J} \\
& y_{i j} \geq 0 \quad \text { for all } i \in \mathcal{I} \text { and } j \in \mathcal{J}
\end{aligned}
$$

- no reason to use the LP formulation for this problem, but we'll use this formulation as a starting point for a modified version of the problem.

Uncapacitated facility location

- Facilities $\square: \mathcal{I}=\{1,2, \ldots, /\}$
- Customers $\diamond: \mathcal{J}=\{1,2, \ldots, J\}$
- $c_{i j}$ is the cost for facility i to serve customer j. (e.g. transit cost)
- f_{i} is the cost to build facility i. We can choose which ones to build.
- No limit on how many customers
 each facility can serve.
Let $\mathcal{S} \subseteq \mathcal{I}$ be the subset of the facilities we choose to build.
This is a much more difficult (NP-complete) problem.

$$
\text { minimum cost }=\min _{\mathcal{S}}\left(\sum_{i \in \mathcal{S}} f_{i}+\sum_{j \in \mathcal{J}}\left(\min _{i \in \mathcal{S}} c_{i j}\right)\right)
$$

Uncapacitated facility location

MIP formulation

$$
\begin{aligned}
\underset{y, z}{\operatorname{minimize}} & \sum_{i \in \mathcal{I}} f_{i} z_{i}+\sum_{j \in \mathcal{J}} \sum_{i \in \mathcal{I}} c_{i j} y_{i j} \\
\text { subject to: } & \sum_{i \in \mathcal{I}} y_{i j}=1 \quad \text { for all } j \in \mathcal{J} \\
& y_{i j} \in\{0,1\} \text { for all } i \in \mathcal{I} \text { and } j \in \mathcal{J} \\
& z_{i} \in\{0,1\} \text { for all } i \in \mathcal{I} \\
& \text { if } z_{i}=0 \text { then } y_{i j}=0 \text { for all } j \in \mathcal{J}
\end{aligned}
$$

- need to find an upper bound on $y_{i j} \leq M$ so we can write the logical constraint as: $y_{i j} \leq M z_{i}$.

Uncapacitated facility location

MIP formulation

- First option: $y_{i j} \leq z_{i}$ for all $i \in \mathcal{I}$ and $j \in \mathcal{J}$.
- Clever simplification: $\sum_{j \in \mathcal{J}} y_{i j} \leq J z_{i}$ for all $i \in \mathcal{I}$.
- (or is it?) Julia notebook: UFL.ipynb

Uncapacitated facility location

Random instance of the problem with $I=J=100$, and $f_{i}, c_{i j}$ uniform in $[0,1]$. Solved using JuMP + Cbc.

- clever constraint: $\sum_{j \in \mathcal{J}} y_{i j} \leq J z_{i}$ for all $i \in \mathcal{I}$.
- Optimal solution found (all variables binary) in 4.2 sec .
- Same solution found if we let $0 \leq y_{i j} \leq 1$. Now 3.7 sec .
- tighter constraint: $y_{i j} \leq z_{i}$ for all $i \in \mathcal{I}$ and $j \in \mathcal{J}$.
- Optimal solution found (all variables binary) in 0.65 sec .
- Same solution found if we let $0 \leq y_{i j} \leq 1$. Now 0.45 sec .
- Same solution if we also let $0 \leq z_{i} \leq 1$. Now 0.02 sec .
- about 15 facilities selected

Uncapacitated facility location

Random instance of the problem with $I=J=100$, and $f_{i}=0.5, c_{i j}$ uniform in $[0,1]$. Solved using JuMP + Cbc.

- clever constraint: $\sum_{j \in \mathcal{J}} y_{i j} \leq J z_{i}$ for all $i \in \mathcal{I}$.
- Optimal solution found (all variables binary) in 32 min.
- Same solution found if we let $0 \leq y_{i j} \leq 1$. Now 15 min .
- tighter constraint: $y_{i j} \leq z_{i}$ for all $i \in \mathcal{I}$ and $j \in \mathcal{J}$.
- Optimal solution found (all variables binary) in 3.3 min .
- Same solution found if we let $0 \leq y_{i j} \leq 1$. Now 3.8 min .
- Non-integer if we also let $0 \leq z_{i} \leq 1$. Now 0.025 sec .
- about 10 facilities selected

Be careful with integer programs!

Solver comparison

- $f_{i}=0.5$ and $c_{i j}$ uniform in $[0,1]$.
- the z_{i} are binary and $0 \leq y_{i j} \leq 1$.
- disaggregated constraint $y_{i j} \leq z_{i}$.

- Most solvers are substantially slower if we use the aggregated constraint instead. Gurobi is just as fast in both cases.

Recap: fixed costs

- Producing x has a fixed cost if the cost has the form:

$$
\operatorname{cost}= \begin{cases}f+c x & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}
$$

- Define a binary variable $z \in\{0,1\}$ where:

$$
z= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}
$$

- The constraint becomes: $x \leq M z$ where M is any upper bound of x.
- The cost becomes: $f z+c x$
- Small M's are usually better!

Variable lower bounds

(lower bounds that vary, not lower bounds on variables!)
We have a variable $x \geq 0$, but we want to prevent solutions where x is small but not zero, for example $x=0.001$.

- Model the constraint: "either $x=0$ or $3 \leq x \leq 10$ ".
- Define a binary variable $z \in\{0,1\}$ that characterizes whether we are dealing with the case $x=0$ or the case $3 \leq x \leq 10$. The set we'd like to model:

Variable lower bounds

upper bounding: $\{0 \leq x \leq 10, z \in\{0,1\} \mid x \leq 10 z\}$

lower bounding: $\{0 \leq x \leq 10, z \in\{0,1\} \mid 3 z \leq x \leq 10 z\}$

Variable lower bounds

LP relaxation: $\{0 \leq x \leq 10,0 \leq z \leq 1 \mid 3 z \leq x \leq 10 z\}$

Same as the convex hull of the original set!

Variable lower bounds

- The MIP is exact (can serve as a substitute to the original set).
- The LP relaxation may not be exact if there are other constraints:

Original problem

$\max _{x, y}$	$x+y$
s.t.	$3 \leq y \leq 4$
	$x+y \leq 5$
$x=$	0 or $3 \leq x \leq 4$

$$
\begin{gathered}
x=0, y=4 \\
\text { obj }=4
\end{gathered}
$$

MIP formulation

$\max _{x, y, z}$	$x+y$
s.t.	$3 \leq y \leq 4$
	$x+y \leq 5$
	$3 z \leq x \leq 4 z$
	$z \in\{0,1\}$

$$
\begin{gathered}
x=0, y=4, z=0 \\
o b j=4
\end{gathered}
$$

LP relaxation

$$
\begin{array}{rl}
\max _{x, y, z} & x+y \\
\text { s.t. } & 3 \leq y \leq 4 \\
& x+y \leq 5 \\
& 3 z \leq x \leq 4 z \\
& 0 \leq z \leq 1
\end{array}
$$

$$
\begin{gathered}
x=1, y=4, z=0.25 \\
\text { obj }=5
\end{gathered}
$$

