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Example: ClothCo
ClothCo is capable of manufacturing three types of clothing:
shirts, shorts, and pants. Each type of clothing requires that
ClothCo have the appropriate type of machine available. The
machines can be rented at a fixed weekly cost. The manufacture
of each type of clothing also requires some amount of cloth and
labor, and returns some profit, indicated below. Each week, 150
hours of labor and 160 sq yd of cloth are available. How should
ClothCo tune its production to maximize profits? Note:
If we don’t produce a particular item, we don’t pay the rental cost!

Clothing
item

Labor
per item

Cloth
per item

Profit
per item

Machine
rental

Shirt 3 hours 4 $6 $200/wk.

Shorts 2 hours 3 $4 $150/wk.

Pants 6 hours 4 $7 $100/wk.
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Example: ClothCo

Obvious decision variables:

� x1 ≥ 0: number of shirts produced each week

� x2 ≥ 0: number of shorts produced each week

� x3 ≥ 0: number of pants produced each week

� Constraints:

3x1 + 2x2 + 6x3 ≤ 150 (labor budget)

4x1 + 3x2 + 4x3 ≤ 160 (cloth budget)

� Maximize weekly profit:

6x1 + 4x2 + 7x3

� Still need to account for machine rental costs...
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Example: ClothCo

Binary variables:

� z1 =

{
1 if any shirts are manufactured

0 otherwise

� z2 =

{
1 if any shorts are manufactured

0 otherwise

� z3 =

{
1 if any pants are manufactured

0 otherwise

� Maximize net weekly profit:

6x1 + 4x2 + 7x3 − 200z1 − 150z2 − 100z3
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Example: ClothCo

Optimization model:

maximize
x ,z

6x1 + 4x2 + 7x3 − 200z1 − 150z2 − 100z3

subject to: 3x1 + 2x2 + 6x3 ≤ 150 (labor budget)

4x1 + 3x2 + 4x3 ≤ 160 (cloth budget)

xi ≥ 0, zi ∈ {0, 1}

if xi > 0 then zi = 1

� We need to find an algebraic representation for the
relationship between xi and zi .
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Detour: logic!

How do we represent: “if x > 0 then z = 1”?

� Statements of the form “if P then Q” are written as:

P =⇒ Q

� This is equivalent to the contrapositive:

¬Q =⇒ ¬P

� But this is not equivalent to the converse:

Q =⇒ P
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Detour: logic!

P : I am on the swim team.
Q: I know how to swim.

� Basic statement (P =⇒ Q) true
“if I’m on the swim team, then I know how to swim”

� Contrapositive (¬Q =⇒ ¬P) also true
“if I don’t know how to swim, then I’m not on the swim team”

� Converse (Q =⇒ P) not true
“if I know how to swim, then I’m on the swim team”
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Detour: logic!

How do we represent: “if x > 0 then z = 1”?

� Contrapositive: “if z = 0 then x ≤ 0”

� Since x ≥ 0, this is the same as: “if z = 0 then x = 0”

� Model this as:

x ≤ Mz

where M is any upper bound on the optimal xopt ≤ M .
This is called the “Big M method”.
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Example: ClothCo

Optimization model:

maximize
x ,z

6x1 + 4x2 + 7x3 − 200z1 − 150z2 − 100z3

subject to: 3x1 + 2x2 + 6x3 ≤ 150 (labor budget)

4x1 + 3x2 + 4x3 ≤ 160 (cloth budget)

xi ≥ 0, zi ∈ {0, 1}
xi ≤ Mizi

� Where Mi is an upper bound on xi .

� IJulia notebook: ClothCo.ipynb
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Example: ClothCo

We can choose very large bounds, e.g. Mi = 105...

...or we can choose Mi using constraints!

� 3x1 + 2x2 + 6x3 ≤ 150 (labor budget)
Since we have xi ≥ 0, we have the obvious bounds:
x1 ≤ 50, x2 ≤ 75, x3 ≤ 25

� 4x1 + 3x2 + 4x3 ≤ 160 (cloth budget)
Using a similar argument, we conclude that:
x1 ≤ 40, x2 ≤ 54, x3 ≤ 40

� Combining these bounds, we obtain:
x1 ≤ 40, x2 ≤ 54, x3 ≤ 25
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Choosing an upper bound

It’s generally desirable to pick the smallest possible M

Simple example:

P =
{

0 ≤ x ≤ 5, z ∈ {0, 1}
∣∣∣ if x > 0 then z = 1

}

0 1 2 3 4 5 6 7 8 9 10
0

1

x

z
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Choosing an upper bound

upper bounding: P1 =
{

0 ≤ x ≤ 5, z ∈ {0, 1}
∣∣∣ x ≤ 10z

}

0 1 2 3 4 5 6 7 8 9 10
0

1

x

z

LP relaxation: P2 =
{

0 ≤ x ≤ 5, 0 ≤ z ≤ 1
∣∣∣ x ≤ 10z

}

0 1 2 3 4 5 6 7 8 9 10
0

1

x

z

Bad!
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Choosing an upper bound

tightest bound: P3 =
{

0 ≤ x ≤ 5, 0 ≤ z ≤ 1
∣∣∣ x ≤ 5z

}

0 1 2 3 4 5 6 7 8 9 10
0

1

x

z

Same as the convex hull of the original set!
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0

1

x

z

Good!
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Simple facility location problem

� Facilities : I = {1, 2, . . . , I}

� Customers : J = {1, 2, . . . , J}

� cij is the cost for facility i to serve
customer j . (e.g. transit cost)

� Each customer must be served and
there is no limit on how many
customers each facility can serve.

I
J

Even easier than an assignment problem! Simply assign each
customer to the cheapest facility for them:

minimum cost =
∑
j∈J

(
min
i∈I

cij

)
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Simple facility location problem

LP formulation

minimize
y

∑
j∈J

∑
i∈I

cijyij

subject to:
∑
i∈I

yij = 1 for all j ∈ J

yij ≥ 0 for all i ∈ I and j ∈ J

� no reason to use the LP formulation for this problem, but
we’ll use this formulation as a starting point for a modified
version of the problem.
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Uncapacitated facility location

� Facilities : I = {1, 2, . . . , I}
� Customers : J = {1, 2, . . . , J}
� cij is the cost for facility i to serve

customer j . (e.g. transit cost)

� fi is the cost to build facility i . We
can choose which ones to build.

� No limit on how many customers
each facility can serve.

I
J

Let S ⊆ I be the subset of the facilities we choose to build.
This is a much more difficult (NP-complete) problem.

minimum cost = min
S

(∑
i∈S

fi +
∑
j∈J

(
min
i∈S

cij

))
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Uncapacitated facility location

MIP formulation

minimize
y ,z

∑
i∈I

fizi +
∑
j∈J

∑
i∈I

cijyij

subject to:
∑
i∈I

yij = 1 for all j ∈ J

yij ∈ {0, 1} for all i ∈ I and j ∈ J
zi ∈ {0, 1} for all i ∈ I
if zi = 0 then yij = 0 for all j ∈ J

� need to find an upper bound on yij ≤ M so we can write
the logical constraint as: yij ≤ Mzi .
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Uncapacitated facility location

MIP formulation

minimize
y ,z

∑
i∈I

fizi +
∑
j∈J

∑
i∈I

cijyij

subject to:
∑
i∈I

yij = 1 for all j ∈ J

yij ∈ {0, 1} for all i ∈ I and j ∈ J
zi ∈ {0, 1} for all i ∈ I
if zi = 0 then yij = 0 for all j ∈ J

� First option: yij ≤ zi for all i ∈ I and j ∈ J .

� Clever simplification:
∑

j∈J yij ≤ Jzi for all i ∈ I.

� (or is it?) Julia notebook: UFL.ipynb
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Uncapacitated facility location

Random instance of the problem with I = J = 100, and
fi , cij uniform in [0, 1]. Solved using JuMP+Cbc.

� clever constraint:
∑

j∈J yij ≤ Jzi for all i ∈ I.

I Optimal solution found (all variables binary) in 4.2 sec.

I Same solution found if we let 0 ≤ yij ≤ 1. Now 3.7 sec.

� tighter constraint: yij ≤ zi for all i ∈ I and j ∈ J .

I Optimal solution found (all variables binary) in 0.65 sec.

I Same solution found if we let 0 ≤ yij ≤ 1. Now 0.45 sec.

I Same solution if we also let 0 ≤ zi ≤ 1. Now 0.02 sec.

� about 15 facilities selected
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Uncapacitated facility location

Random instance of the problem with I = J = 100, and
fi = 0.5, cij uniform in [0, 1]. Solved using JuMP+Cbc.

� clever constraint:
∑

j∈J yij ≤ Jzi for all i ∈ I.

I Optimal solution found (all variables binary) in 32 min.

I Same solution found if we let 0 ≤ yij ≤ 1. Now 15 min.

� tighter constraint: yij ≤ zi for all i ∈ I and j ∈ J .

I Optimal solution found (all variables binary) in 3.3 min.

I Same solution found if we let 0 ≤ yij ≤ 1. Now 3.8 min.

I Non-integer if we also let 0 ≤ zi ≤ 1. Now 0.025 sec.

� about 10 facilities selected Be careful with integer programs!

19-20



Solver comparison

� fi = 0.5 and cij uniform in [0, 1].

� the zi are binary and 0 ≤ yij ≤ 1.

� disaggregated constraint yij ≤ zi .
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comparison of different solvers

GLPK
Cbc
Mosek
Gurobi

� Most solvers are substantially slower if we use the aggregated
constraint instead. Gurobi is just as fast in both cases.

19-21



Recap: fixed costs

� Producing x has a fixed cost if the cost has the form:

cost =

{
f + cx if x > 0

0 if x = 0

� Define a binary variable z ∈ {0, 1} where:

z =

{
1 if x > 0

0 if x = 0

� The constraint becomes: x ≤ Mz
where M is any upper bound of x .

� The cost becomes: fz + cx

� Small M ’s are usually better!
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Variable lower bounds
(lower bounds that vary, not lower bounds on variables!)

We have a variable x ≥ 0, but we want to prevent solutions
where x is small but not zero, for example x = 0.001.

� Model the constraint: “either x = 0 or 3 ≤ x ≤ 10”.

� Define a binary variable z ∈ {0, 1} that characterizes
whether we are dealing with the case x = 0 or the case
3 ≤ x ≤ 10. The set we’d like to model:
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0

1

x

z
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Variable lower bounds

upper bounding:
{

0 ≤ x ≤ 10, z ∈ {0, 1}
∣∣∣ x ≤ 10z

}

0 1 2 3 4 5 6 7 8 9 10
0

1

x

z

lower bounding:
{

0 ≤ x ≤ 10, z ∈ {0, 1}
∣∣∣ 3z ≤ x ≤ 10z

}
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0

1

x

z
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Variable lower bounds

LP relaxation:
{

0 ≤ x ≤ 10, 0 ≤ z ≤ 1
∣∣∣ 3z ≤ x ≤ 10z

}
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Same as the convex hull of the original set!
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Variable lower bounds

� The MIP is exact (can serve as a substitute to the original set).

� The LP relaxation may not be exact if there are other constraints:

Original problem

max
x ,y

x + y

s.t. 3 ≤ y ≤ 4

x + y ≤ 5

x = 0 or 3 ≤ x ≤ 4

MIP formulation

max
x ,y ,z

x + y

s.t. 3 ≤ y ≤ 4

x + y ≤ 5

3z ≤ x ≤ 4z

z ∈ {0, 1}

LP relaxation

max
x ,y ,z

x + y

s.t. 3 ≤ y ≤ 4

x + y ≤ 5

3z ≤ x ≤ 4z

0 ≤ z ≤ 1

x = 0, y = 4
obj = 4

x = 0, y = 4, z = 0
obj = 4

x = 1, y = 4, z = 0.25
obj = 5
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